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ABSTRACT

A new approach for distinguishing precipitation types at the surface, the spectral bin classifier (SBC), is

presented. This algorithm diagnoses six categories of precipitation: rain (RA), snow (SN), a rain–snow mix

(RASN), freezing rain (FZRA), ice pellets (PL), and a freezing rain–ice pellet mix (FZRAPL). It works by

calculating the liquid-water fraction fw for a spectrum of falling hydrometeors given a prescribed temperature

T and relative humidity profile. Demonstrations of the SBC output show that it provides reasonable estimates

of fw of various-sized hydrometeors for the different categories of precipitation. The SBC also faithfully

represents the horizontal distribution of precipitation type inasmuch as the model analyses and surface ob-

servations are consistent with each other. When applied to a collection of observed soundings associated with

RA, SN, FZRA, and PL, the classifier has probabilities of detection (PODs) that range from 62.4% to 98.3%.

The PODs do decrease when the effects of model uncertainty are accounted for. This decrease is modest for

RA, SN, and PL but is large for FZRA as a result of the fact that this form of precipitation is very sensitive to

small changes in the thermal profile. The effects of the choice of the degree of riming above the melting layer,

the drop size distribution, and the assumed temperature at which ice nucleates are also examined. Recom-

mendations on how to mitigate all forms of uncertainty are discussed. These include the use of dual-polarized

radar observations, incorporating output from the microphysical parameterization scheme, and the use of

ensemble model forecasts.

1. Introduction

An accurate analysis and prediction of precipitation

type during winter is one of the greatest challenges

facing forecasters today (Ralph et al. 2005; Stewart et al.

2015). While numerous algorithms exist to determine

the surface precipitation type, most have strong biases

that impede their ability to correctly distinguish freezing

rain from ice pellets (FZRA and PL; e.g., Reeves et al.

2014; Elmore et al. 2015). Ryzhkov et al. (2014) dem-

onstrated that by explicitly calculating the liquid-water

fraction of falling hydrometeors for a spectrum of drop

sizes one can more accurately discriminate FZRA and

PL. Herein, their approach is expanded and tested for a

wide variety of environments. Results show this algo-

rithm reliably detects both FZRA and PL as well as rain

and snow (RA and SN).

The surface precipitation type is controlled by several

factors including the drop size distribution (DSD), pre-

cipitation rate, hydrometeor interactions, and the initial-

phase composition of the hydrometeor (Crawford and

Stewart 1995; Bernstein 2000; Cortinas 2000; Rauber

et al. 2000, 2001; Robbins and Cortinas 2002; Changnon

2003; Cortinas et al. 2004; Thériault et al. 2010). How-

ever, it is generally believed that the primary dictator is

the vertical distribution of the wet-bulb temperature

Tw (e.g., Bourgouin 2000). As a consequence, a number of

algorithms have been devised that solely rely on the Tw

profile to determine the precipitation type (e.g., Ramer

1993; Baldwin et al. 1994; Bourgouin 2000; Schuur et al.

2012). While computationally efficient and good at de-

tecting SN and RA, most such algorithms have been

found to be rather poor at discriminating either or both

of FZRA and PL (Bourgouin 2000; Manikin et al. 2004;

Manikin 2005; Wandishin et al. 2005; Reeves et al. 2014;

Elmore et al. 2015). Reeves et al. (2014) found the cause

of these errors to be faulty assumptions about what

characteristics in the Tw profiles distinguish FZRA from

PL. They were unable to find any set of characteristics in
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the profiles that can be used to reliably discriminate

FZRA from PL, suggesting microphysical controls may

be more important than previously thought.

One could account for microphysical effects by using

the model-predicted mixing ratios of SN, RA, and

graupel, but this approach has certain limitations. For

example, microphysics schemes used in operational

models do not allow for mixed-phase hydrometeors, an

important control on the surface precipitation type

(Thériault and Stewart 2010). Also, there are no ex-

isting schemes that allow for a PL category. Therefore,

when a hydrometeor refreezes, it is converted to either

SN, graupel (i.e., Thompson et al. 2014), or hail. This

makes the unambiguous discrimination between SN

and PL quite challenging. We also note that compari-

sons between algorithms that use model-diagnosed

hydrometeor habits and those that utilize only Tw

profiles yield similar statistics (Ikeda et al. 2013;

Reeves et al. 2014; Elmore et al. 2015; Benjamin et al.

2016), indicating this approach is not necessarily a su-

perior one. Since hydrometeor mixing ratios at the

surface are not routinely measured, the diagnosis and

correction of systematic errors in this type of algorithm

is difficult.

Hybridmethods that blendmicrophysical information

and sounding data have been proposed. Ramer (1993)

introduced a technique to assign the liquid-water con-

tent of hydrometeors as they fall from the so-called

precipitation-generation layer to the surface. Reeves

et al. (2014) found this algorithm performs very poorly

at detecting PL because of poor assumptions about how

the liquid-water fraction is related to Tw. Czys et al.

(1996) promoted a more sophisticated approach that

uses an assumed terminal velocity of a hypothetical

hydrometeor and the depth of elevated warm layers to

discriminate between FZRA and PL. However, Rauber

et al. (2001) argue this method is not effective since it

assumes hydrometeors are completely frozen at the

cloud top, an assumption that can lead to erroneous

classifications when untrue. All of the above algorithms

are built upon the assumption of a single hydrometeor

size that may not be representative of the actual me-

dian drop size, another likely contributor to errant

diagnoses.

A potentially viable method is to explicitly compute

the rates of melting and refreezing for a spectrum of

drop sizes. Such an algorithm is described and tested

herein and is henceforth referred to as the spectral bin

classifier (SBC). A description of the SBC and demon-

stration of its performance for select soundings are

provided in section 2. A statistical assessment of the

SBC along with consideration of the effects of various

sources of uncertainty is presented in section 3. Con-

cluding thoughts are discussed in section 4.

2. Algorithm logic and design

a. Thermal and microphysical controls in the surface
precipitation type

Consider the three thermal profile types in Fig. 1. The

simplest are the completely subfreezing profiles shown

in Fig. 1a. The surface precipitation type for these pro-

files is dictated by whether the cloud-top wet-bulb

temperature Tw–ct is less than the ice nucleation tem-

perature Tice. We define Tice as the wet-bulb tempera-

ture at which the ice nucleus in a water droplet becomes

activated (usually less than 258C; e.g., Meyers et al.

FIG. 1. Idealized profiles of wet-bulb temperature assuming (a) no, (b) one, and (c) two crossings of the 08C
isotherm. The possible precipitation types for each profile are indicated.
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1992; Petters and Wright 2015). If Tw–ct # Tice, ice

crystals will form and the resulting surface precipitation

type will be SN. Otherwise, supercooled liquid-water

droplets will form, resulting in FZRA.

The profiles in Fig. 1b cross the 08C isotherm one

time and have surface Tws that are greater than 08C.

If Tw–ct . Tice, only liquid-water droplets will form

aloft and these will simply warm to above-freezing

temperatures as they enter the melting layer, yielding

RA at the surface. If not, the precipitation type will

depend on whether the frozen particles entering the

melting layer have sufficient time to completely melt

before reaching the surface. The larger andmore heavily

rimed a particle is, the more time it will require to

completely melt. Therefore, for this condition, one may

have fully melted liquid-water drops at the surface, re-

sulting in RA, or partially melted ice particles. This latter

class is sometimes referred to as wet snow, but the official

Automated SurfaceObserving Station (ASOS) recordwill

indicate RASN, which stands for a RA–SN mix. We use

the terminology RASN throughout the rest of the paper.

The third profile type has an elevated warm layer

capping a surface-based subfreezing layer (Fig. 1c).

Assuming the cloud top is above the highest crossing of

the 08C isotherm, there are two possible precipitation

types. If all hydrometers completely melt in the melting

layer or Tw–ct . Tice, the subfreezing layer will require

Tw #Tice for ice nucleation and refreezing to occur. If

this condition is met and the droplets refreeze before

reaching the ground, PL will be observed. Otherwise,

the precipitation type will be FZRA. If the melting layer

is sufficiently cool and shallow or the hydrometeors

sufficiently large and rimed before entering it, they may

not completely melt. In this case, the hydrometeors will

have active ice nuclei and refreezing will begin imme-

diately when the hydrometeors enter the subfreezing

layer, resulting in PL. It is possible, given a spectrum of

drop sizes, for multiple phases (some frozen, some liq-

uid) to occur in the same volume, yielding a mixture of

FZRA and PL. This mixture is referred to as FZRAPL.

More complex soundings, with multiple melting and

refreezing layers, are possible. Depending on the surface

Tw, FZRA, PL, or RA, or some combination of the

three, may be observed.

When one considers both the thermal and micro-

physical forcings, as above, it is clear that an accurate

discrimination of the precipitation type requires knowl-

edge of the drop size, the amount of riming on hydro-

meteors above the melting layer, and the amount of

liquid water in the hydrometeors as they enter near-

surface subfreezing layers. One must also properly

designate the phase of the hydrometer at the cloud

top, as argued by Rauber et al. (2001). To the best of

our knowledge, there are no existing algorithms that

account for all of these controls.

b. Methodology

Herein, a new algorithm is described and tested. This

algorithm, referred to as the spectral bin classifier, is a

one-dimensional spectral-bin model that calculates the

liquid-water fraction fw for a spectrum of hydrometeor

sizes and, therefore, can account for the above micro-

physical controls. It follows the logic described in

Ryzhkov et al. (2014) with some alterations. Namely, it

diagnoses six (rather than four) categories of pre-

cipitation: SN, RA, FZRA, PL, RASN, and a FZRA–

PL mix (FZRAPL). Other modifications include 1) as-

signing the hydrometeor phase at the cloud top rather

than assuming it is frozen, 2) allowing for multiple

melting and refreezing layers, and 3) further refinement

of the conditions that are used to discriminate between

FZRA and PL.

The effectiveness and sensitivity of the SBC is dem-

onstrated in several different ways. This includes ex-

amination of profiles of fw across the hydrometeor

spectrum for various sounding types, calculating the

probabilities of detection (PODs) for several hundred

observed soundings associated with the various forms of

precipitation, and performing sensitivity studies of the

effects of changing the degree of riming ( frim), choice of

Tice, andDSD.We also demonstrate the effects ofmodel

uncertainty on the algorithm performance through con-

sideration of plan views of precipitation type as well as

sensitivity experiments.

c. Functional description of the SBC

The first step in the algorithm is to determine the top

of the cloud. In the natural environment, one could

declare this as the topmost layer with RH $ 100%.

However, numerical weather prediction models that

use a cumulus parameterization scheme may have some

precipitation generated in subsaturated grid boxes.

CommonRH thresholds used to specify the potential for

saturation in mesoscale models range from 70% to 80%.

However, using such low thresholds will overestimate

the cloud depth in grid boxes that are saturated, po-

tentially biasing the classifier toward PL or SN (Rauber

et al. 2001). To avoid this, if the column-maximumRH is

greater than 80%, the cloud top is set to the layer with

the highest RH.Otherwise, a simple classification of RA

or SN is made depending on whether the surface Tw is

greater or less than 08C. This method allows for in-

stances where hydrometeors generated at upper levels,

in a completely glaciated portion of the cloud, act to

seed lower cloud decks (e.g., Rauber et al. 2014; Stark

et al. 2013).
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The algorithm then follows the flow chart depicted in

Fig. 2. If the sounding is completely subfreezing below

the cloud top and has Tw–ct # Tice, it is classified as SN.

Otherwise, FZRA is diagnosed. Those profiles that are

not completely subfreezing have the liquid-water frac-

tion fw of each hydrometeor in a spectrum of sizes cal-

culated at each model level from the cloud top to the

surface. If Tw–ct . Tice, all hydrometeors are assumed to

be liquid at the cloud top. Otherwise, they are assumed

to be frozen. At eachmodel level, if Tw. 08C and fw, 1

(i.e., there exists some ice in the hydrometeor), melting

is assumed. For this, the equations used to compute fw
follow those presented in Trömel et al. (2014; see their

appendix). Refreezing happens when eitherTw#Tice or

when the hydrometeor is composed of both liquid and

ice and Tw , 08C. The equations used to compute fw in

refreezing layers follow those in Kumjian et al. (2012).

The hydrometeor size bins are determined in such a way

that the melted diameters of hydrometeorsDw in the jth

bin are centered atDw 5 0.051 jDDw for ( j 5 0, . . . , n)

where the bin size DDw is 0.1mm and n is the number of

bins imposed by the user.

At the surface, the hourly precipitation rates for

liquid water and ice Pw and Pi (mmh21) are computed

according to

P
w
5

3600

r
w

�
Dmax

Dmin

m(D)f
w
(D)V

T
(D)N(D) dD and (1)

P
i
5

3600

r
i

�
Dmax

Dmin

m(D)[12 f
w
(D)]V

T
(D)N(D) dD , (2)

FIG. 2. A flowchart showing the logic used by the SBC. In the SBC, Tw, Tice, Tw–ct, fw, Pi, Pw,

and Nc are the wet-bulb temperature; ice-nucleation temperature; wet-bulb temperature at

cloud top; liquid-water fraction; precipitation rates of ice and liquid water, respectively; and the

number of crossings that the Tw profile makes with the 08C isotherm.
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where 3600 is the number of seconds per hour; rw and ri
are the densities of water and ice (g cm23), respectively;

andm(D), fw(D),VT(D), andN(D) are, respectively, the

mass (kg), liquidwater fraction, terminal velocity (ms21),

and size distribution (m23) of a hydrometeor with di-

ameter D (mm). If Pi 5 0mmh21 and Pw . 0mmh21,

then the precipitation is classified as either RA or

FZRA (if surface Tw , 08C). Those hydrometeors that

are still unassigned are classified as FZRA, PL,

FZRAPL, or RASN, depending on the ratios of Pi to

Pw and the number of crossings the Tw profile makes

with the 08C isotherm (Nc), as indicated in Fig. 2.

One important note is that, although the SBC ex-

plicitly treats the processes of melting and refreezing,

some simplifications are required for the code to be

computationally efficient enough to be run in real time.

For example, no interaction between particles, such as

collision or aggregation, is accounted for. Processes that

act to grow or deplete hydrometeors, such as conden-

sation or evaporation, are also neglected. In other

words, one hydrometeor aloft produces one hydrome-

teor at the surface with an unchanged Dw. Also, ice

nucleation is assumed to occur at a prescribed temper-

ature regardless of the hydrometer size [laboratory ex-

periments suggest larger drops begin freezing at warmer

temperatures than smaller drops (Pruppacher and Klett

1997)]. This latter assumption may only be applicable in

convective updrafts wherein larger raindrops have a

higher likelihood of having an ice nucleus inside and,

as a result, may nucleate faster at warmer temperatures.

In the case of melting and refreezing, all raindrops are

prenucleated regardless of their size. As is demonstrated

in subsequent sections, despite these simplifications, the

SBC still provides a reasonably robust classification that

is superior to existing algorithms.

d. Classification of select soundings

We now demonstrate how the SBC operates using

select soundings that are associated with various forms

of precipitation. For the following, a Tice of 268C and

the DSD labeled as DSD25 in Fig. 3 are used. This DSD

comes from disdrometer measurements made in central

Oklahoma over 7 yr for precipitation events associated

with radar-observed reflectivities ranging from 20 to

30 dBZ (Schuur et al. 2005). This DSD has 18 size bins

with a maximum Dw of 1.84mm. Also, no riming on

particles entering the melting layer is assumed. The

sensitivity to each of these parameters will be discussed

in section 3b.

1) CLASSIFICATION OF ICE PELLETS

Two examples in which PL are diagnosed by the SBC

are presented. The first occurs at 0000 UTC 5 March

2008 at Buffalo, NewYork (BUF; see Fig. 5 for sounding

locations). This sounding has an elevated warm layer

capping a deep, cold subfreezing layer (Fig. 4a). The fw,

according to the SBC, as a function of height above

ground level (AGL) and Dw, shows that all hydrome-

teors completely melt in the melting layer (i.e., fw 5 1;

Fig. 4b). When the liquid water drops descend below

1km AGL, where the ambient Tw is less than Tice, ice

nucleation and refreezing occur. The smallest hydro-

meteors almost instantly refreeze while larger ones

refreeze more slowly.1 In this example, since all hydro-

meteors completely refreeze before reaching the ground,

PL is diagnosed.

The sounding for the other event has a very shallow

melting layer and only those hydrometeors withDw less

than about 0.55mm completely melt (Figs. 4c,d). Be-

cause Tw . Tice in the surface-based subfreezing layer,

these drops do not refreeze before reaching the ground.

However, the larger hydrometeors are able to refreeze

because they only partially melted aloft. This yields a

Pw/Pi , 0.15 and PL is diagnosed. For both examples,

nearby surface observations indicate PL, in agreement

with the SBC.

2) CLASSIFICATION OF FREEZING RAIN

Two examples of a FZRAdiagnosis are also provided.

The first has a deep elevated warm layer in which all

hydrometeors completely melt (Figs. 4e,f). Because

FIG. 3. The DSDs used to test SBC sensitivity. These are based

on disdrometer measurements presented in Schuur et al. (2005)

and are associated with precipitation systems with reflectivities

ranging from 25 to 50 dBZ.

1 The time required for refreezing has been compared with ex-

plicit computations using equations from Pruppacher and Klett

(1997) and shows good agreement.
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FIG. 4. The (a),(c),(e),(g),(i),(k),(m),(o) observed Tw profiles from select events, and (b),(d),(f),(h),(j),(l),(n),(p)

the associated distribution of fw as a function of Dw (shaded).

1752 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 55

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 08:45 PM UTC



Tw.Tice in the surface-based subfreezing layer, no ice

nucleation and, hence, no refreezing occur. Therefore,

FZRA is diagnosed. In the other example, the melting

layer is not as pronounced and hydrometeors withDw.
1.55mm only partially melt and, hence, are able to re-

freeze. Smaller hydrometeors completely melt aloft and

remain as all liquid to the surface because the sub-

freezing layer is too warm for ice nucleation. This leads

to a Pi/Pw , 0.15 and FZRA is diagnosed. Both di-

agnoses are consistent with surface observations taken

coincident with the soundings.

3) CLASSIFICATION OF RAIN

Here, the classification is straightforward. If the sur-

face Tw . 08C and the ratio Pi/Pw , 0.15, RA is di-

agnosed; otherwise, PL is the choice. Figure 4i is an

example sounding that is classified as RA. It has a

shallow surface-based warm layer that extends to about

200m AGL. There is also a pronounced elevated warm

layer. All hydrometeors completely melt in this layer

(Fig. 4j). Although Tw is subfreezing between 600 and

740m AGL, Tw . Tice; hence, there is no refreezing.

Because the surface Tw . 08C, a RA classification is

made, consistent with nearby surface observations.

4) CLASSIFICATION OF MIXES

FZRAPL is diagnosed when the number of crossings

theTw profilemakes when the 08C isotherm ismore than

one (Nc . 1; i.e., there is an elevated warm layer) and

both Pi/Pw and Pw/Pi are greater than 0.15. An example

is shown in Fig. 4k. The sounding has an elevated warm

layer capping a surface-based subfreezing layer. The

minimum Tw in this layer is greater than Tice. Therefore,

those hydrometeors with Dw , 0.85mm, which com-

pletely melt in the melting layer, retain fw 5 1 to the

surface (Fig. 4l). Larger hydrometeors only partially

melt aloft and, therefore, completely refreeze in the

subfreezing layer. This results in near-equal Pi and Pw,

and FZRAPL is diagnosed.

An example of a profile conducive to RASN is shown

in Fig. 4m. This sounding has a very shallow surface-

based warm layer. For hydrometeors withDw, 0.6mm,

there is complete melting in this layer, but most hydro-

meteors only partially melt and hit the ground as wet SN

(Fig. 4n).

5) CLASSIFICATION OF COMPLEX SOUNDINGS

Profiles with multiple elevated warm layers, such as

that shown in Fig. 4o, can exist. Such soundings can be

quite difficult for classifiers that assume only one ele-

vated warm layer can exist (i.e., Baldwin et al. 1994;

Bourgouin 2000; Schuur et al. 2012). The SBC, since it

explicitly calculates fw at each level, can handle such

soundings with reasonable accuracy. The manner in

which hydrometeors with differingDwmelt and refreeze

as they encounter each layer in the atmosphere is ex-

hibited in Fig. 4p. The smaller hydrometeors have

complete melting in the layers with Tw . 08C and

complete refreezing in the layers with Tw , Tice. Larger

hydrometeors have only partial melting until they reach

the lowest melting layer, where complete melting oc-

curs. There is complete refreezing in the lowest sub-

freezing layer for all hydrometeor sizes. Hence, PL is

diagnosed. This is consistent with the surface observa-

tions of precipitation type near the sounding.

3. Demonstration of SBC performance

a. Statistical performance of the SBC

The SBC is applied to a collection of observed

soundings associated with SN, RA, PL, and FZRA. This

dataset is the same as that used in Reeves et al. (2014)

and is created by considering all soundings for winter

months (i.e., October–March) from 2002 to 2013 for the

sites shown in Fig. 5. Only those soundings whose pre-

cipitation type does not change during the 40-min win-

dow surrounding the launch time are considered.

Additionally, no mixes are included. Finally, all sound-

ings are required to ascend to at least 5 km AGL. This

yields 649 SN, 545 RA, 422 FZRA, and 125 PL sound-

ings. There are fewer PL soundings because this form of

precipitation is only reported at stations that are aug-

mented by human observers (indicated in Fig. 5). The data

were manually quality controlled to remove soundings

FIG. 5. The terrain (shaded) and location of radiosonde (black)

and ASOS (red) sites used to select the events. The stations in-

dicated with an asterisk are those that are routinely augmented.
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associated with obvious errors in the precipitation type,

such as reports of RA in the presence of a surface-based

subfreezing layer. For additional details on how these

soundings were selected and quality controlled, the

reader is referred to Reeves et al. (2014).

The PODs for each category of precipitation are

presented in Table 1. Other types of verification scores

were considered, but the interpretation does not change.

Therefore, we limit our presentation to only the POD.

For SN and RA, the PODs are 91.4% and 97.2%, re-

spectively. Including RASN as a hit increases the PODs

to 95.2% and 98.3%. The SBC is less robust with the

detection of FZRA and PL, having PODs of 62.4% and

63.2%, respectively, or 72.8% and 73.6%, if one includes

FZRAPL as a hit. To put these numbers in perspective,

the PODs for the five algorithms considered in Reeves

et al. (2014), which were also applied to the same set of

soundings, are included in Table 1. The SBC’s greatest

advantage is its comparatively high PODs for FZRA

and PL.While other algorithms may have a higher POD

for one or the other of these classes, no other algorithm

performs as well with both FZRA and PL.

b. Sensitivity to certain parameters

As suggested in section 2a, frim,Tice, and theDSDmay

exert a nonnegligible control on the surface pre-

cipitation type. In the above analyses, prescribed values

for each have been used. But some sensitivity does exist.

These are quantified and discussed below.

1) SENSITIVITY TO THE DEGREE OF RIMING

The frim affects the particle diameter D and the den-

sity of snow rs, which, in turn, alter the volume and

terminal velocity of the frozen hydrometeors. These,

then, affect the amount of time required for complete

melting. One can account for variations in frim as follows:

D5 2:29f20:48
rim D1:443

w and (3)

r
s
5 0:178f

rim
D20:922. (4)

The units of D, Dw, and rs are millimeters, millimeters,

and grams per centimeter cubed, respectively. Both (3)

and (4) come from Zawadzki et al. (2005) and assume

frim ranges from 1 to 5, where 1 indicates no riming and

5 is for lump graupel. Let us consider the effects of

changing frim for the sounding shown in Fig. 6a. This

sounding has a pronounced elevated warm layer and

an approximately 1-km-deep surface-based cold layer

with a minimum Tw of about 258C. All hydrometeors

completely melt in the melting layer when frim 5 1

(Fig. 6b), but hydrometeors with Dw . 1.4mm only

partially melt when frim 5 5 (Fig. 6c). The final clas-

sification when frim 5 1 is obviously FZRA, as all hy-

drometeors have an fw 5 1 at the surface. However,

since less than 15% of the total water content is liquid

at the surface for an frim 5 5, a classification of PL is

made. The actual observation indicates that only

FZRA exists at this time and location. The SBC is run

for all profiles discussed above with frim ranging from 1

to 5 and their PODs provided in Table 2. Increasing

frim leads to decreased PODs for FZRA and increased

PODs for PL (there is also a slight decrease in the

PODs for RA). The most unbiased (i.e., the PODs for

FZRA and PL are near equal) results occur for frim 5 1.

2) SENSITIVITY TO THE ICE NUCLEATION

TEMPERATURE

The choice of Tice affects whether particles will be

initialized as liquid or frozen at the cloud top and at what

temperature refreezing can occur for hydrometeors that

are all liquid. The sounding shown in Fig. 6d has a strong

sensitivity to Tice. Assuming Tice 5 268C allows for

complete refreezing of almost all drops (Fig. 6e). Thus, a

classification of PL is made. Decreasing it to2108C does

not change the rate of melting aloft (cf. Figs. 6e and 6f),

but it implies that the portion of the sounding below

500m AGL has temperatures greater than Tice and so

refreezing cannot occur, resulting in FZRA (Fig. 6f).

To explore the sensitivity to the choice of Tice, the

SBC is rerun for all profiles using a Tice ranging

from 2158 to 08C. The resulting PODs are provided in

Table 3. The PODs for SN decrease with decreasing Tice

because more soundings have Tw–ct . Tice and are

consequently classified as FZRA. The PODs for FZRA

and PL are inversely sensitive to Tice. However, both

have a POD of about 62% for a Tice of 268C. Other

values of Tice bias the PODs toward one or the other

form of precipitation, thus justifying the choice of

Tice 5 268C throughout the paper.

3) SENSITIVITY TO THE DROP SIZE DISTRIBUTION

To test the effects of changing the DSD, the SBC is

rerun using the array of DSDs shown in Fig. 3. These are

TABLE 1. PODs (%) for the SBC algorithm (top and bottom

rows) and from the five algorithms studied in Reeves et al. (2014)

using observed soundings. For those cells with two values, the

second corresponds to the score if one assumes a mix is a hit.

SN RA FZRA PL

SBC 91.4/95.2 97.2/98.3 62.4/72.8 63.2/73.6

Baldwin1 86.7 96.1 28.4 89.6

Baldwin2 97.1 96.1 28.4 56.0

Bourgouin 92.6 96.1 48.8/55.7 50.4/60.0

NSSL 94.1 96.4 40.3/78.9 26.4/70.4

Ramer 94.9 99.6 65.4/66.1 25.6

SBC perturbed 87.8/93.2 92.8/94.5 43.26/49.0 62.9/68.7
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from observations presented in Schuur et al. (2005) and

are associated with precipitation systems with re-

flectivities ranging from 25 to 50dBZ. Some of these

values are higher than those typically observed in a

wintertime precipitation system, but their use herein

demonstrates the sensitivity. The PODs for the different

DSDs is provided in Table 4. SN is not dependent on the

choice of DSD and RA is only slightly dependent on it.

Even FZRA and PL are not especially dependent on the

DSD. Both decrease as the reflectivity increases while

the fraction of FZRAPL classifications increase. Several

other hypothetical DSDs were also considered (not

shown). These indicate that the PODs are only slightly

dependent on the choice of DSD.

c. Examples from select events

Plan viewsof the horizontal distribution of precipitation

type illustrate the algorithm’s ability to correctly distrib-

ute the various forms of precipitation. Figures 7a,c,e

show the observed precipitation type according to the

meteorological Phenomena Identification Near the

Ground (mPING; Elmore et al. 2014) dataset for the 2-h

period surrounding the time indicated. These observa-

tions are collected by citizen observers and are not

quality controlled. However, analyses in Elmore et al.

(2014, 2015) suggest they are sufficiently accurate for

this type of inquiry.

The events are from three different types of weather

systems. The first is associated with a strong nor’easter in

the North Atlantic states (Griffin et al. 2014; Picca et al.

2014; Fig. 7a). A narrow transition zone with various

forms of precipitation including FZRA, RASN, and PL

is evident over Long Island and central New Jersey.

TABLE 2. PODs (%) for the SBC algorithm using observed

soundings and an frim ranging from 1 to 5. The second value in each

cell corresponds to the score if one assumes a mix is a hit.

frim SN RA FZRA PL

1 91.4/95.2 97.2/98.3 62.4/72.8 63.2/73.6

2 91.4/95.2 96.3/97.6 55.7/69.9 71.2/79.8

3 91.4/95.2 95.9/97.2 53.0/68.6 74.4/83.8

4 91.4/95.2 95.5/96.8 50.7/67.4 75.2/84.6

5 91.4/95.2 95.2/96.5 48.0/66.7 75.2/84.6

FIG. 6. The (a),(d) observed Tw profile, with associated fw profiles assuming an frim 5 (b) 1 or (c) 5 and a Tice 5 (e)

268 or (f) 2108C.
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Mostly SN and RA are observed north and south of this

zone, respectively. The second occurs in association

with a warm front across the southern United States

(Fig. 7c). Mostly RA is reported over the Gulf Coast

states, Tennessee, and southern Kentucky. A mix of PL

and FZRA is seen over Illinois, Indiana, and Ohio. PL is

also observed over western North Carolina. In the upper

Midwest, most reports are of SN. The last event occurs

in association with cold-air damming along the Appa-

lachian Mountains. Mostly SN is observed over regions

of elevated terrain (Fig. 7e) and a mix of PL and FZRA

is identified over the Piedmont region of North and

South Carolina and northern Georgia and Alabama.

The SBC precipitation-type distributions are created

using the Rapid Refresh (RAP; Brown et al. 2011) an-

alyses of Tw, RH, and pressure. These have 51 terrain-

following vertical levels and a 13-km grid spacing. The

distributions are in fair agreement with the observations.

For the first event, the SBC captures the position and

width of the transition zone over Long Island and the

presence of RA to the south and SN to the north

(Fig. 7b). In the second, the aerial extents of the regions

of SN, FZRA, IP, and RA are similarly sized to the ob-

servations, although someplacement errors exist (Fig. 7d).

In the last event, the SBC analysis correctly captures the

location of the RA–FZRA transition zone over central

Georgia and southern South Carolina and the presence

of RASN over northern Alabama (Fig. 7f).

However, there are some important differences be-

tween the observations and the SBC analyses. For ex-

ample, there is a region diagnosed as RASN over

western Pennsylvania in Fig. 7b. The observations sug-

gest some RA, PL, and FZRA cases are noted in this

area. In the second event, SN is diagnosed over northern

Indiana and southwest Ohio that does not agree with

mPING observations (cf. Figs. 7c and 7d). The region of

FZRA is also too far south relative to the mPING ob-

servations. Over western North Carolina, the SBC in-

dicates RASN rather than PL. Finally, in the third event,

the SBC fails to diagnose PL over central North Caro-

lina, instead indicating SN (Fig. 7f). In all three of these

examples, the mPING observations suggest there is an

elevated warm layer aloft that is not present in the RAP

analyses. It is unclear whether the RAPmodel has failed

to position the elevated warm layer far enough north or

if the mPING users are making errant reports, but in-

asmuch as the model analyses and observations are

consistent with each other, the SBC faithfully represents

the precipitation type.

d. Effects of model uncertainty

Now that we have seen how the SBC performs for

observed soundings and the types of distributions it

yields, let us consider the effects of model uncertainty.

Herein, we use the perturbed soundings from Reeves

et al. (2014). These are generated by perturbing the

observed soundings described above 1000 times each in

accordance with the range of uncertainty inherent in a

mesoscale model. The error distribution has a higher

concentration near 08C and is approximately Gaussian

in nature. The reader is referred to Reeves et al. (2014)

for more information on this sounding dataset.

The PODs for the perturbed soundings are included in

Table 1 (cf. top and bottom rows). For SN, RA, and PL,

the PODs decrease by only a few percentage points,

indicating that the SBC is quite robust for these cate-

gories, even in the face of typical model uncertainty.

However, the decrease in POD for FZRA is quite large,

about 20%. This merits some explanation. Many of the

observed FZRA soundings have elevated warm layers

that are not warm enough to support complete melting

of all hydrometeors or have surface-based cold layers

with minimum Tw that are only slightly warmer than

Tice (Reeves et al. 2014; see their Figs. 3b,d). Small

TABLE 4. PODs (%) for the SBC algorithm using observed

soundings and the DSDs shown in Fig. 6. The second value in each

cell corresponds to the score if one assumes a mix is a hit. OBS

refers to the DSD based on observed disdrometer measurements.

DSD SN RA FZRA PL

DSD25 91.4/95.2 97.2/98.3 62.4/72.8 63.2/73.6

DSD30 91.4/95.2 97.0/98.0 60.5/76.0 63.2/75.2

DSD35 91.4/95.2 96.6/97.6 58.2/79.5 63.2/79.2

DSD40 91.4/95.2 96.4/97.4 56.5/81.2 62.4/80.8

DSD45 91.4/95.2 96.0/97.2 53.7/82.0 63.2/83.2

DSD50 91.4/95.2 95.8/97.0 53.0/82.5 59.2/84.0

TABLE 3. PODs (%) for the SBC algorithm using observed

soundings and aTice ranging from 08 to2158C. The second value in

each cell corresponds to the score if one assumes a mix is a hit.

Tice (8C) SN RA FZRA PL

0 89.5/93.3 95.7/96.9 16.9/44.5 86.4/87.2

21 89.5/93.3 95.7/96.9 17.9/47.7 84.8/86.4

22 89.5/93.3 96.4/97.6 23.8/49.4 84.8/86.4

23 89.5/93.3 96.8/98.0 34.7/53.6 80.0/84.8

24 89.5/93.3 97.0/98.2 43.9/60.6 75.2/82.4

25 90.9/94.7 97.0/98.2 54.5/69.2 69.3/77.6

26 91.4/95.2 97.2/98.3 62.4/72.8 63.2/73.6

27 91.2/95.1 97.2/98.3 66.6/83.3 59.2/72.8

28 89.6/93.5 97.2/98.3 69.6/86.6 52.0/68.0

29 87.9/91.7 97.2/98.3 71.1/89.3 47.2/67.2

210 86.3/89.9 97.2/98.3 72.8/92.0 46.4/66.4

211 83.7/87.4 97.2/98.3 75.0/94.5 42.4/65.6

212 82.1/85.8 97.2/98.3 75.5/95.5 41.6/64.8

213 78.7/82.4 97.2/98.3 76.0/96.0 39.2/64.8

214 75.5/79.2 97.2/98.3 76.0/96.0 39.2/64.8

215 70.3/73.9 97.2/98.3 76.0/96.0 39.2/64.8

1756 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 55

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 08:45 PM UTC



FIG. 7. The (a),(c),(e) mPING distributions of observed precipitation type for the 2-h period surrounding the

time indicated at the top of each panel, and (b),(d),(f) the corresponding SBC analyses. In (b),(d), and (f) only

the areas with observed composite reflectivity greater than 0 dBZ are shaded.
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perturbations in either the warm or cold direction are

often sufficient to cause either incomplete melting aloft

or to trigger ice nucleation at low levels as is demon-

strated for the soundings shown in Fig. 8a. The observed

Tw profile (given by the green curve) has a shallow el-

evated warm layer between 1400 and 2300m AGL. The

minimum Tw in the surface-based cold layer is greater

than Tice. In the observed sounding, hydrometeors with

Dw , 1mm completely melt aloft and do not refreeze

before hitting the ground (Fig. 8b). Larger hydrome-

teors only partially melt aloft and so do refreeze before

reaching the ground. This sounding is classified as

FZRAPL. Comparatively cold and warm perturbations

(given by the blue and red curves, respectively) are

included in Fig. 8a. These have different depths and

maximum Tw in the elevated warm layer and different

minimum Tw in the surface-based cold layer. In the cold

perturbation, smaller hydrometeors still completely

melt aloft, but refreeze in the layer with Tw # Tice

(Fig. 8c). This sounding is classified as PL. In the warm

perturbation, all hydrometeors melt in the elevated

warm layer and do not refreeze in the surface-based cold

layer because Tw . Tice (Fig. 8d). This sounding is

classified as FZRA. The actual observed precipitation

type at the surface is FZRA.

Discussions in Thériault et al. (2010) suggest the de-

gree of uncertainty noted above is entirely reasonable

for FZRA. Indeed, other classifiers have similar de-

creases in their FZRA PODs (Reeves et al. 2014). We

note that the POD for the perturbed FZRA soundings is

close to the variability in the natural environment, as

discussed in Elmore et al. (2015) and may explain why

soundings such as those in Fig. 8a are misclassified. A

high degree of horizontal variability in precipitation

type could signify that refreezing upon contact only

occurs in favored locations, such as on elevated surfaces,

away from buildings and roads, etc. Indeed, the National

Center for Environmental Information’s Storm Events

Database corroborates this assumption, describing the

event as having light SN that transitions to ‘‘a mixture of

freezing rain and sleet’’ and, eventually, ‘‘plain rain.’’

e. Mitigating the effects of uncertainty

The combined effects of these sources of uncertainty

are significant enough to justify mitigative action. The

steps one might take depend on whether the SBC is

applied to a model analysis or forecast. If one is using an

analysis, dual-polarized radar observations could be

paired with the SBC to provide a reasonable estimate of

frim as is discussed in Ryzhkov et al. (2016) and Vogel

et al. (2015). A reasonable DSD may be assigned by

following the methodology of Cao et al. (2008). They

show that the Zdr dependency on Z is positive for RA,

negative for SN, and remains low and does not depend

on Z for PL and graupel. The Zdr slopes are also used to

discriminate between SN/PL and FZRA in Trömel et al.

(2016, manuscript submitted toMeteor. Z.). Finally, one

can use the dual-polarized radar observations to confirm

or refute the classification as in Schuur et al. (2012) or

look for refreezing signatures in dual-polarized radar

observations (Kumjian et al. 2013). The benefit of such

an approach is that the surface classification can be up-

dated each time a new radar mosaic is created (every 2–

5min). This has obvious value to certain sectors, such as

the aviation industry.

However, if one is applying the SBC to forecast data,

different steps must be taken. One could assign rea-

sonable estimates of frim using the model-predicted

mixing ratios for SN and graupel. The DSD could also

be directly obtained from the microphysical parame-

terization scheme. The most obvious approach for

addressing model uncertainty is to switch from a de-

terministic to a probabilistic frame of reference. This, of

course, requires the use of ensemble modeling, which, at

FIG. 8. The (a) observed (green) and select perturbed (cold, blue; warm, red) Tw profiles at 1200 UTC 12 Jan 2005 at Albany, New York

(ALB), and (b)–(d) their associated fw distributions.
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present, is not operationally performed at higher reso-

lutions. It is also possible to apply a probabilistic filter,

such as is promoted in the recent work of Chenard et al.

(2015). This work uses cumulative density functions of

Tw in the lower troposphere to assign a probability to the

different classes. Future work in this direction is strongly

advocated.

4. Conclusions

A new surface precipitation-type classification algo-

rithm is presented. This algorithm, referred to as the spec-

tral bin classifier, diagnoses six categories of precipitation:

RA, SN, FZRA, PL, RASN, and FZRAPL. It works by

calculating the liquid-water fraction fw of hydrome-

teors of different sizes as they descend from the cloud

top to the surface. The relative precipitation rates of

frozen and unfrozen content (Pi and Pw, respectively)

are then computed and used to determine the type of

precipitation at the surface. The rates of melting and

refreezing are explicitly calculated, but the algorithm

does not account for hydrometeors to interact or for

hydrometeor-size-dependent ice nucleation. This allows

the process to be computationally efficient enough to

run in real time.

Unlike other approaches (e.g., Baldwin et al. 1994;

Bourgouin 2000; Ramer 1993; Schuur et al. 2012), the

use of multiple size bins allows one to make assumptions

about the total hydrometeor content that is refrozen or

melted at a given layer in the atmosphere. Analyses of fw
as a function of hydrometeor size clearly show the rel-

ative quickness of the melting and refreezing of smaller

hydrometeors compared to larger ones. Thus, it can be

more definitively stated whether complete or partial

melting has occurred aloft. As a result, the distinction

between FZRA and PL is made clearer than in more

conventional algorithms.

The SBC was applied to a collection of 1741 observed

soundings associated with SN, RA, FZRA, and PL. The

classifier performs very well with the detection of SN

and RA, having PODs that range from 91.4% to 98.3%.

Although the PODs are somewhat less for FZRA and

PL (61.6%–73.6%), comparison of the SBC detection to

that from existing algorithms shows that the SBC has

greater accuracy. Plan views from select events show

that inasmuch as the model data accurately represent

the actual thermodynamic profiles, the SBC reliably

captures the distribution of precipitation types at the

surface.

The effects of various sources of uncertainty on the

classifier’s performance were quantified. The SBC is

sensitive to the choice of DSD, amount of riming above

the melting layer, and the choice of Tice. All of these

have inverse effects on the PODs for FZRA and PL.

Model uncertainty was also examined. This was ac-

complished by perturbing the observed soundings 1000

times each in accordance with the range of uncertainty

inherent in a mesoscale model. The SBC is fairly im-

mune to uncertainty effects for SN, RA, and PL. How-

ever, FZRA PODs were considerably degraded by

model uncertainty. This is due to the fact that many

FZRA events have elevated warm layers that are unable

to support complete melting of all hydrometeors or that

have a surface-based cold layer minimum Tw that is

close to Tice. Small perturbations are often sufficient to

prevent a large fraction of the hydrometeors from

melting aloft or to allow for complete refreezing be-

fore reaching the ground.

Certain steps are recommended to address the issue of

uncertainty. If one is applying the SBC to a model

analysis, dual-polarized radar observations can be used

to assign a reasonable frim andDSD. Radar observations

can also be used to confirm or refute the SBC output,

thus allowing for greater certainty in the analysis, es-

pecially in the cases of melting or refreezing. If one is

applying the SBC to a model forecast, the frim and DSD

can be gleaned from themicrophysical parameterization

scheme. Ensemble forecasting can alleviate issues with

model uncertainty. However, we note that even without

these measures, the SBC provides more reliable classi-

fications than other existing methods.
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